Do well on finals AND retain knowledge: Strategies for short and long-term success

image of students in traditional lecture room taking an exam

Many of us have experienced that doing well on an exam, may not mean all that information we used to successfully answer the questions on the test is retained. Both remembering and forgetting are physiological processes likely driven by the need to prioritize bits of the massive amount of information to which we are exposed. While the science  and biology of forgetting is an emerging and large part of the story that dictates what information ends up in our long, long-term memory, this post will focus on ‘remembering’  and practices that are shown to support it.

As finals time approaches in colleges and universities, there is still some time to structure study practices so that we not only remember and can use information from early in the semester and perform well on the final assessment, but that we are also more likely to take that remembered information (learning) forward so that it can be recalled and used long into the future. Program curricula are structured with the expectation of a high degree of pre-requisite learning from previous courses. So, practices that help to reinforce the neurological pathways that allow us to store and access information, not only support success on the final exams in the  short-term, but also support more effective building of disciplinary knowledge throughout our chosen programs. The implications of these long-term effects of effective study deserve more consideration as motivations for adopting the strategies shared here.

What are the basic stages of memory?

Memory is more complex than this but here are the basics:

Simple memory diagram
https://opentextbc.ca/introductiontopsychology/chapter/8-1-memories-as-types-and-stages/
Sensory memory – subconsciously gathers information from the senses (allows time for your brain to process incoming information from the senses (retention is generally less than 1 second)
Short-term memory – if a sensation (visual, auditory, tactile) is attended to, it can move into this version of memory.  Without further attention, this will be lost within seconds.
Long-term memory – Storage of information for longer time periods (retention is hours, days, months or years)

For learning to be effective, we want the information that we hope to use into the future to be transformed into memory, and specifically the kind that will be available to us for a long time.  There are some practices that can be used to improve the likelihood of taking information with you into the future, for example, into a course for which this information is pre-requisite! These practices can be incorporated into course and assignment design by instructors, and they can be incorporated into personal study habits.

What can you do to make learning stick?

Here we summarize  a set of study practices to promote long-term memory.

Retrieval Practice –  referred to as ‘free recall’,  ‘blank page testing’ or ‘brain dumps’. This practice simply entails writing down all you can remember associated with a particular topic or learning objective. Retrieval is particularly valuable as a way of finding out what you know and what you don’t know well enough… yet. The focus and cognitive struggle to pull those memories to the forefront is the practice that helps create those neurological changes that reinforce pathways in the brain to keep information accessible for longer time.

Collaborative learning  – has been shown to improve learning outcomes because of the opportunity to share knowledge, fill in blanks for each other, reflect and share strategies and perspectives among learners. After some individual retrieval time, compare and discuss your individual sets of information with other learners, remind each other of ideas that may have been missed by making a collaborative braindump. Then individually and collectively, identify the most challenging pieces of the topic so they can be the focus of more practice. While the research on the value of collaborative recall is complex and can be very dependent on context and structure of the collaboration, according to a meta-analysis on the topic by Marion and Thorley, 2016:

“Generally, collaborative remembering tends to benefit later individual retrieval.”

When collaborating in study groups, intersperse opportunities to recall and reflect on information and process individually, with small-group collaboration to fill in knowledge gaps, teach and quiz each other, and work through and discuss the process in problem solving. End each session with a reflection on what you learned, what you know, and where you need to continue to workThis reflection requires retrieval of the information immediately after learning it and thus can improve long-term remembering

Spacing and mixing-up (interleaving) topics for Retrieval Practice 

Two more critical concepts related to your retrieval of information and other active approaches to working with material during study are interleaving and retrieval spacing. 

Interleaving is simply the idea of devoting short periods of focused, active time (not simply re-reading notes, etc) on one subject and then switching to another, or to several topics, and then, after a break, returning to the first and cycling through again. This can be done during a 3 hour study session where you alternate 35-45 minute chunks of working on 3 different topics (with short breaks between), to designing a weekly schedule for a set of 5 different topics spread across daily study sessions and re-organized and revisited several times across a week. As is common with active and collaborative learning strategies, even though assessments show students benefit from these practices, students find it difficult and thus do not ‘feel’ that it is working.  Unfortunately, the bit of extra cognitive struggle required to shift gears and retrieve information multiple times, is the very reason it works. Treading the same path multiple times across a study session, a week, and a semester, is what leaves the traces in our brains that allow us to find our way back to that knowledge over time.

“Over 8 weeks, students in two lecture sections of a university-level introductory physics course completed thrice-weekly homework assignments, each containing problems that were interleaved (i.e., alternating topics) or conventionally arranged (i.e., one topic practiced at a time). On two surprise criterial tests containing novel and more challenging problems, students recalled more relevant information and more frequently produced correct solutions after having engaged in interleaved practice (with observed median improvements of 50% on test 1 and 125% on test 2). Despite benefiting more from interleaved practice, students tended to rate the technique as more difficult and incorrectly believed that they learned less from it.”

Samani and Pan, 2021

Here is a schematic representing the more effective ‘interleaved practice’ with the more common ‘blocked practice’ schedule

https://schoolhabits.com/study-techniques-how-to-use-interleaved-practice-to-study/

Spacing of retrieval practice refers to the amount of time between revisiting a topic and working with it for a 2nd, 3rd and even 4th time before an exam. A really thorough and accessible resource for implementing spaced retrievel from the University of Iowa concludes that  the time between retrieving and working with the same information matters much less than making sure it happens over time before the time of the assessment.  A good rule of thumb is ‘touching’ the material 3-5 times  over a week, several weeks, or even the period of a full semester is beneficial to retention of knowledge.

It is the time of year where the focus of learning moves toward being successful on those cumulative final exams in each course.  There is still time to implement these practices on your own and to share them with like-minded collaborators.  In the long-run, these strategies will allow students to be better prepared to move through a scaffolded curriculum in a disciplinary program, get the most out of individual courses, and lay the groundwork of concepts and knowledge that will make them more prepared to build on the next layer of learning in future courses or in chosen pathways beyond an undergraduate education.

Hope these help!  Finish Strong!

USING THE METACOGNITIVE CYCLE TO TURN ‘PROBLEM SETS’ INTO ‘STUDY SESSIONS’

After a fun and productive meeting with a couple of our undergraduate educators in my office last week, we shifted gears and started to talk about how very busy their own semesters were.  One of them confided that they were committed to getting a good night’s sleep (Bravo!), and they had time for doing homework – mostly in the form of problem sets for engineering students in their first couple of years – but that they were having a hard time finding time to ‘study’. At that point I asked, “Isn’t doing a problem set ‘studying’?”

The brief conversation that followed reminded me that students sometimes compartmentalize tasks, experiences, and even related content information.  And that ‘studying’ continues to mean finding large blocks of time to go over class notes and materials – often in passive, ineffective ways.  It is what they are used to doing.  Compartmentalization is often our default to get things done in a busy schedule.  And we typically don’t support students in making those critical links and connections.  But we can! When instructors are explicit about putting class activities, homework assignments, and topics into a larger context, and encourage complementary practices that prompt students to grapple with those connections, students become better, more self-directed learners, gain depth of understanding, new perspectives, and insight into their own thought processes. These powerful, under-used practices are reflection and metacognition.

This post will introduce the terms and share their value and some related links. Ultimately we suggest a practical way (and provide a worksheet to get started) to apply the ‘metacognitive cycle’ to problem sets so that the large amount of time students spend on these applications will become more efficient, deep- learning opportunities in which students actively retrieve, review and process course content while they apply their knowledge to solving problems.

Defining the terms

Whether we understand them in these specific terms or not, metacognition and reflection are critical parts of the ‘expert’ practitioner’s tool box.  However, novice learners – early undergraduates – need to be instructed in the practice and the value of these tools. Generally, reflection is thinking back on an experience in order to process it and turn it into ‘knowledge’.  In this way reflection can also be a version of ‘retrieval’ (pulling up information and working with it again, also a critical practice for making knowledge stick).  Metacognition is most easily described as a type of reflection in which one examines the thought processes used during a task.  So metacognition is ‘thinking about thinking. There is a lot of research on metacognition in the psychological literature and it is complex! Research suggests that adding metacognition to disciplinary teaching in the classroom where groups of students are solving problems can help them become better at solving open-ended problems and transferring that understanding to solving novel problems.

These higher order thinking skills are the goal of our disciplinary curricula, particularly in technical and applied sciences like engineering.

Applying the ‘metacognitive cycle’ to problem sets

Studying is most efficient when done in short, spaced, repeated, active, intervals. Interspersing topics, revisiting and actively engaging with the material several times before an assessment, has been shown to provide the best results.  So, in a perfect world, we aren’t looking for large chunks of time to ‘go over notes’ or other more passive activities that are shown to not be very effective for learning. By adding a few extra minutes (30?) to the practice of ‘doing a problem set’, a student – ideally a group of students – can contextualize the problems they are solving in their growing conceptual understanding and make it an efficient, deep-learning study session.

 

The metacognitive cycle is broken into the following simple stages: planning (before beginning working on the problems in the set, gathering resources), monitoring (what is happening in ones thoughts while trying to apply knowledge to problem sets), and evaluation (how did it go, what was hard? what was learned? what do you need to ask at office hours or recitations?)

 

During the Planning Stage

Take a few minutes to look through the problems set and decipher the larger context of the problems there:

  • List what you know about conceptual information that surrounds the problems and the associated equations that are being applied – retrieval
  • Write 2 – 3 learning objectives. These are statements about what one should know by the successful completion of the problem set – goal setting. If they are not given in the assignment, it is your job as a learner to ‘figure them out’ from the types of problems in the worksheet – retrieval
  • At the start of each question, ask  “what information do I need to know in order to begin this question and why do I need it? “- reflection, retrieval and metacognition

During the Monitoring Stage

As you work through each of the problems in the set, be intentional about the choices you are making.  Ask the ‘why’ questions:

  • In a group or solo ask the question ‘why is this problem challenging?’. Responses to this question requires – reflection.
  • Explain the decisions/processes that led to the solving of each part of a problem. Ask why did you/I make that choice in this part of the problem.  Answers to these questions require – metacognition

During the Evaluation Stage

At the close of the problem set, or the part of it that was completed in one session, look through and remember the content that was applied, the processes and the decisions.

  • Write a paragraph that summarizes (more detail is better) of what was learned and how ideas are connected and applied in the problems completed – reflection
  • Make a list of topics/concepts/skills that still need work for good understanding and bring these to the next office hours or recitation section to get the support needed – goal setting

These suggested practices are the same ones that experts use without conscious effort!  For someone new to material, reflection and metacognition and using the simple application of these learning strategies in work that is required as homework, will  make it more relevant and expedite learning!  Less additional time will be needed for ‘studying’,  and the time spent studying will be more effective and efficient. This should help with time management and result in deeper understanding of disciplinary material. Start slow, and see how it works.  Here is a worksheet to remind about guidelines while applying these strategies to problem sets.  Let us know how it goes, and enjoy the process of  becoming an expert!